Tampilkan postingan dengan label regression. Tampilkan semua postingan
Tampilkan postingan dengan label regression. Tampilkan semua postingan

LSQ2: An update to LSQ (Casio fx-9750GIII, TI-84 Plus CE)

LSQ2:  An update to LSQ (Casio fx-9750GIII, TI-84 Plus CE)


Least Square Matrix and Correlation


The program LSQ2 fits the allows to fit data to a function with minimal error possible. 


Multiple Linear Regression:

f(x1, x2, x3, ...) = b0 + b1 * x1 + b2 * x2 + b3 * x3 + ....


Polynomial Regression:

f(x) = b0 + b1 * x + b2 * x^2 + b3 * x^3 + ...


General:

f(x) = b0 + b1 * g1(x) + b2 * g2(x) + b3 * g3(x) + ...


f(x1, x2, x3, ...) = b0 * g0(x1, x2, x3, ...) + b1 * g1(x1, x2, x3, ...) + ...


The Matrices X, Y, and B



X is your data matrix and is set up as columns:


[  g0(x),  g1(x),  g2(x), ... ]


Where the function g(x) represents functions applied to every data point x_i.  


Example 1:   f(x) = b0 + b1 * x 


The columns of the data matrix are set up as:

[ 1,  x ]


A column of ones set up solving for a constant.


Example 2:  f(x) = b0 + b1 * x + b2 * x^2


The columns of the data matrix are set up as:

[ 1, x, x^2 ]


Example 3:  f(x0, x1) = b0 + b1 * x1 + b2 * x2


The columns of the data matrix are set up as:

[ 1, x1, x2 ]  (note, not x squared in this case)



Y is the answer matrix, of size n rows and 1 column.  There are n data points. We are fitting the function to y_i.


B is the coefficient matrix, consisting of values b0, b1, b2, ....



Simply put, to find B using the least squares method given the data points:


B = (X^T X)^-1 X^T Y


X^T is the transpose matrix of X



How well does the function fit?  


We can predict y values by multiplying X by B.  


P' = X B 



Determining Coefficient of Correlation:


r^2 = SSreg ÷ SStot = [ B^T X^T Y - (O Y)^2 ÷ n ] ÷ [ Y^T Y - (O Y)^2 ÷ n ]

where O is a ones matrix [[ 1, 1, 1, 1, ... ]] of size 1 x n.  



Casio fx-9750GIII Program:  LSQ2


From the text file:  


'ProgramMode:RUN

ClrText

"2022_-_07_-_19 EWS"

"LEAST SQUARES"

"_Mat _X"?->Mat X

"_Mat _Y"?->Mat Y

Dim Mat Y->List 26

List 26[1]->N

(Trn Mat X*Mat X)^-1*Trn Mat X*Mat Y->Mat B

"_Mat _B:"Disps

Mat BDisps

{1,N}->Dim Mat O

Fill(1,Mat O)

Mat O*Mat Y->Mat S

Mat S*Mat S/N->Mat S

(Trn Mat B*Trn Mat X*Mat Y)-Mat S->Mat R

Mat R*(Trn Mat Y*Mat Y-Mat S)^-1->Mat R

"R_^<2>_:"Disps

Mat R



Listing:


ClrText

"2022-07-19 EWS"

"LEAST SQUARES"

"Mat X"? → Mat X

"Mat Y"? → Mat Y

Dim Mat Y → List 26

List 26[1] → N

(Trn Mat X × Mat X)^-1 × Trn Mat X × Mat Y → Mat B

"Mat B:" ⊿

Mat B ⊿

{1, N} → Dim Mat O

Fill(1, Mat O)

Mat O × Mat Y → Mat S

Mat S × Mat S ÷ N → Mat S

(Trn Mat B × Trn Mat X × Mat Y) - Mat S → Mat R

Mat R × (Trn Mat Y × Mat Y - Mat S)^-1 → Mat R

"R^2:" ⊿

Mat R


Matrices:

Mat X:  data matrix, X

Mat Y:  answer matrix, Y

Mat B: coefficient matrix, B

Mat O: ones matrix

Mat S:  used for calculation

Mat R:  correlation




TI-84 Plus CE Program:  LSQ2  (TI-Basic)



Listing:

"2022-07-19 EWS"
ClrHome
Disp "LEAST SQUARES"
Input "[X]? ", [J]
Input "[Y]? ", [I]
dim([I]) → L6
L6(1) → N
([J]^T [J])^-1 [J]^T [I] → [B]
Disp "[B]: "
Pause [B]
{1,N} → dim([H])
Fill(1,[H])
[H] [I] → [G]
[G] [G] * N^-1 → [G]
[B]^T [J]^T [I] - [G] → [A]
[A] * ([I]^T [I] - [G])^-1 → [A]
Disp "R^2: "
Disp [A]

List:
L6:  [ 2nd ] [ 6 ]

Matrices:
[J]:  data matrix, X
[I]:  answer matrix, Y
[B]: coefficient matrix, B
[H]: ones matrix
[G]:  used for calculation
[A]:  correlation


Examples

Example 1:

Equation: y = b0 + b1 * x1 + b2 * x2

X = [ [ 1, 1, 3 ] [ 1, 2, 4 ] [ 1, 5, 6 ] [ 1, 7, 3 ] [ 1, 7, 2 ] ]
Y = [ [ 0.86 ] [ 0.89 ] [ 0.95 ] [ 0.98 ] [ 0.96 ] ]

Coefficients:  [ [ b0 ] [ b1 ] [ b2 ] ]
B = [ [ 0.8257514451 ] [ 0.01836705202 ] [ 5.953757225E-3 ] ]

Correlation: [ [ 0.9875030926 ] ]

Example 2:

Equation: y = b0 + b1 * x + b2 * x^2

X = [ [ 1, 1, 1^2 ] [ 1, 2, 2^2 ] [ 1, 3, 3^2 ] [ 1, 4, 4^2 ] [ 1, 5, 5^2 ] [ 1, 6, 6^2 ] ]
Y = [ [ 1000 ] [ 1294 ] [ 1511 ] [ 1233 ] [ 1006 ] [ 879 ] ]

Coefficients:
B = [ [ 681.7 ] [ 435.2107143 ] [ -69.30357143 ] ]

Correlation: [ [ 0.8119609681 ] ]


Summary

Function to fit:   
f(x1, x2, x3 ... ) = b0 + b1 * g1(x1, x2, x3, ...) + b2 * g2(x1, x2, x3, ...) + ...

X = data matrix
Y = answer matrix, size n x 1
B = coefficient matrix

Determining the Coefficients:   B = (X^T X)^-1 X^T Y

Predicting Values:  P = X B

Determining Coefficient of Correlation:

r^2 = SSreg ÷ SStot = [ B^T X^T Y - (O Y)^2 ÷ n ] ÷ [ Y^T Y - (O Y)^2 ÷ n ]
where O is a ones matrix [[ 1, 1, 1, 1, ... ]] of size 1 x n.  

Source

Abdi, Hervè.  "Multiple Correlation Coefficient"  Program in Cognition and Neurosciences   https://personal.utdallas.edu/~herve/Abdi-MCC2007-pretty.pdf   Retrieved July 17, 2022.  


All original content copyright, © 2011-2022.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 

Lists in Numworks - Version 19.2

Lists in Numworks - Version 19.2


Introduction


In Version 19,  lists were added as an object in the Numworks calculator.  We can define and name lists with any values that we want. Lists are designated by the brackets { }. 


*   The values can be real number, complex numbers, numbers with units, scientific constants, and combinations of those types.   What is not allowed in lists are strings and matrices.


*  The indexing of lists starts with 1.   We can call a list's elements by the parenthesis after the list name.  For example,  xlist(10) recalls the 10th element of the list xlist.


*  { f(k) }_k≤value generates a list of f(k) from k=1 to value, step 1.   The variable can be almost any variable you want, except e and i.  e is designated as the exponential constant (about 2.71828...) and i is designated as the imaginary number √-1.   The limits are strictly from 1 to value.


*  Once a user defined list is created, the individual values cannot be changed.   Furthermore, there are no augment or delete commands.  In this sense, user defined lists acts like tuples in Python.


*  Lists can be recalled in the Statistics and Regression apps.   The system named lists V#, X#, and Y# are updated accordingly.


* Defining a list of random values will always change the randomized values every time a user defined list is recalled.  


Please note that this is for Version 19.2.  


Screenshots are captured using the Numworks Emulator on July 10, 2022:  www.numworks.com/emulator
















Note:  Casio fx-991EX Week - September 5, 2022 to September 9, 2022 


Eddie


All original content copyright, © 2011-2022.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 



Backlink 9999 Traffic Super

Order Now...!!!!