Tampilkan postingan dengan label electronics. Tampilkan semua postingan
Tampilkan postingan dengan label electronics. Tampilkan semua postingan

HP 32SII Applications: Moments of Inertia, Conductor Temperature Change, Slit Patterns

HP 32SII Applications: Moments of Inertia, Conductor Temperature Change, Slit Patterns


Moment of Inertia - Uniform Disk


The moment of inertia on a uniform disk of radius r is:


I = 2 * π * L * ρ * ∫(r^3 dr, 0, R) 


where ρ = M ÷ ( π * R^2 * L)


The formula of inertia for the uniform disk can be simplified to:


I = M * R^2 * 1/2

where

M = mass of the disk

R = radius of the disk

I = inertia of the center of the mass


HP 32SII Program:


I01  LBL I

I02  INPUT M

I03  INPUT R

I04  x^2

I05  ×

I06  2

I07  ÷

I08  RTN


(12.0 bytes, CK = B55F)


Example:

 

Inputs:

M = 8 kg

R = 0.2 m


Result:

I = 0.16 kg * m^2


Source:

Texas Instruments Incorporated.  Texas Instruments TI-55III Scientific Calculator Sourcebook  Second Edition.  1984



Conductor Temperature Change


The temperature change due to the change of the resistance can be calculated as:


∆t = 1 ÷ α * ( R_2 ÷ R_1 - 1)


where:

∆t = change of temperature in °C

R_2 = new resistance in Ω  (R)

R_1 = new resistance in Ω  (F)

α = temperature coefficient of resistance (A)  (see table below and source)


Selected Temperature Coefficients of Resistance at 20°C (α):


Material:  α


Nickel:  0.005866

Iron:  0.005671

Aluminum:  0.004308

Copper:  0.004041

Silver:  0.003819

Gold:  0.003715

Alloy Steel (99.% iron):  0.003


HP 32SII Program:


T01  LBL T

T02  INPUT A

T03  INPUT R

T04  INPUT F

T05  ÷

T06  1

T07  -

T08  x<>y

T09  1/x

T10  ×

T11 RTN


(16.5 bytes, CK = DDA9)


Example:


Inputs:

A = 0.004041  (α, Copper)

R = 58 Ω  (new resistance)

F = 50 Ω  (old resistance)


Result:

39.594160 °C


Sources:


"Temperature Coefficient of Resistance"  All About Circuits.  Last Retrieved May 17, 2022.  https://www.allaboutcircuits.com/textbook/direct-current/chpt-12/temperature-coefficient-resistance/#:~:text=The%20resistance%2Dchange%20factor%20per,with%20an%20increase%20in%20temperature.


National Radio Institute Alumni Association  Mathematics For Radiotricians Washington, D.C.  1942


Slit Patterns


The intensity of diffraction pattern of the single slit can be calculated by the formula:


I = Im * (sin α ÷ α)^2


where:

Im = potential maximum intensity

α = (π * s * sin θ ÷ λ) in radians

s = slit width

λ = wavelength in Hz

θ = angle of diffraction in degrees


For a double slit:


I = Im * (cos B)^2 * (sin α ÷ α)^2


where:

B is in radians and

B = (π * d * sin θ ÷ λ)

d = distance between slits

θ = angle of diffraction in degrees

α = see the single slit formula above


HP 32SII:

A:  θ

S:  slit wdith

W:  wavelength, λ

I:  maximum intensity


LBL S: single slit

LBL D: double slit, uses LBL S


HP 32SII Programs:


Single Slit:


S01  LBL S

S02  DEG

S03  INPUT A

S04  SIN

S05  INPUT S

S06  ×

S07  π

S08  ×

S09  INPUT W

S10  ÷

S11  RAD

S12  ENTER

S13  SIN

S14  x<>y

S15  ÷

S16  x^2

S17  INPUT I

S18  ×

S19  RTN


(28.5 bytes, CK = 40E0)


Double Slit:


D01  LBL D

D02  XEQ S

D03  DEG

D04  RCL A

D05  SIN

D06  INPUT D

D07  ×

D08  π

D09  ×

D10  RCL÷ W

D11  RAD

D12  COS

D13  x^2

D14  ×

D15  RTN


(22.5 bytes, CK = 8BC7)


Example:


Inputs:

A = 8°

S = 1.96E-6 m

W = 500E-9Hz

I  = 1


Single Slit Calculation:

XEQ S:  0.333496


Double Slit Calculation:

XEQ D

D = 3E-5 m

Result:  0.068409


Source:

Saul, Ken.  The Physics Collection:  Ten HP-41C Programs for First-Year Physics Class  Corvallis, OR.  1986



Coming up:  Python Week:  August 1 to August 5, 2022


Eddie


All original content copyright, © 2011-2022.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 

TI-65 Programs

TI-65 Programs


Conversions:  Miles and Kilometers 


TI-65 Conversion:  

F1:  Miles to Kilometers

F2:  Kilometers to Miles


00  2nd 53.53     LBL F1

01  38     ×

02   6     6

03   3     3

04   3     3

05   6     6

06   0     0

07  39     =

08  3rd 25     in-cm

09  28     ÷

10   1     1

11  15     EE

12   5     5

13   39   =

14   -15   INV EE    // remove scientific notation

15   2nd 52    RTN


16   2nd 53.54     LBL F2

17   38     ×

18   1      1

19   15    EE

20   5      5

21   -3rd 25     INV in-cm

22   28     ÷

23   6      6

24   3      3

25   3      3

26   6      6

27   0      0

28   39   ×

29   -15      INV EE

30   2nd 52    RTN


4.9 mi to km:

4.9 [ F1 ]

Result:  7.8857856  km


150 km to mi: 

150 [ F2 ]

Result:  93.20567884 mi


Conversions:  RGB (Red/Green/Blue) Color Code and Hexadecimal Codes


TI-65 Conversions:

F1:  RGB to Hexadecimal

F2:  Hexadecimal to RGB


00   2nd 53.53      LBL F1

01    38     ×

02    1       1

03    6       6

04    18     y^x

05    4       4

06    39     =

07    12.0    STO 0

08    51    R/S

09    38    ×

10    2      2

11    5      5

12    6      6

13    39    =

14    12.59   STO+

15    0      0

16    51    R/S

17    12.59    STO+

18    0       0

19    13.0    RCL 0

20    3rd 13   HEX

21    2nd 52  RTN


22    2nd 53.54   LBL F2

23    12.0   STO 0

24    3rd 12    DEC

25    28      ÷

26    1        1

27    6        6

28    18      y^x

29    4        4

30    39      =

31    2nd 27   INTG

32    51     R/S

33    38     ×

34    1       1

35    6       6

36    18     y^x    

37    4       4

38    39     =

39    12.49  STO-

40    0      0

41    13.0    RCL 0

42    28    ÷

43    2      2

44    5      5

45    6      6

46    39    =

47   2nd 27   INTG

48   51     R/S

49   38     ×

50   2       2

51   5       5

52   6       6

53   39     =

54  12.49   STO-

55   0        0

56   13.0   RCL 0

57   2nd 52  RTN


RGB to HEX:   red  [ F1 ]  green [ R/S ] blue [ R/S ] 

Example:  Red:  108, Blue:  4, Green: 82

108 [ F1 ]  4 [ R/S ] 82 [ R/S ]

Result:  6C0452  (HEX mode)


HEX to RGB:   [ 3rd ] (HEX) hex code [ F2 ]  

Example:  Hex Code: 3401D2

[ 3rd ] (HEX) 3401D2 [ F2 ] 

Result:  52 (red) [ R/S ], 1 (green) [ R/S ], 210 (blue)



Electronics:  Primary Filter and Voltage Gain


F1:  Calculate frequency.  f = 1 ÷ ( 2 * π * R * C ).   

Syntax:  R [ F1 ] C [ R/S ]

R = resistance in ohms ( Ω )

C = capacitance in farads ( F )

f = frequency in Hertz (Hz)


F2:  Voltage Gain.  G = 20 * log( E_output ÷ E_input ).  

Syntax:  E_output [ F2 ] E_input [ R/S ]

E_output = output voltage ( V )

E_input = input voltage ( V )

G = voltage gain in decibels ( dB )


Source:  Casio fx-61f User's Manual


00  2nd 53.53  LBL F1

01  38    ×

02  51    R/S

03  38    ×

04  2      2

05  38    ×

06  2nd 17  π

07  39    =

08  34    1/x

09 2nd 52  RTN


10  2nd 53.54  10

11  28    ÷

12  51    R/S

13  39    =

14  2nd 32  LOG

15  38   ×

16  2     2

17  0     0

18  39   =

19  2nd 52  RTN



R = 8400 Ω, C = 0.05*10^-6 F

8400 [ F1 ] 0.05E-6 [ R/S ]

Result:  3.789403407E2 Hz


E_output = 54 V, E_input = 28 V

54 [ F2 ] 28 [ R/S ]

Result:  5.70471457 dB


Eddie


All original content copyright, © 2011-2022.  Edward Shore.   Unauthorized use and/or unauthorized distribution for commercial purposes without express and written permission from the author is strictly prohibited.  This blog entry may be distributed for noncommercial purposes, provided that full credit is given to the author. 


Backlink 9999 Traffic Super

Order Now...!!!!